- centre osculateur
- мат. центр соприкосновения
Dictionnaire polytechnique Français-Russe. 2013.
Dictionnaire polytechnique Français-Russe. 2013.
osculateur — osculateur, trice [ ɔskylatɶr, tris ] adj. • 1701; du lat. osculari « embrasser » ♦ Géom. Se dit d une courbe, d une surface, etc., qui, en un point donné, a le contact de l ordre le plus élevé avec une autre courbe, surface. Plan osculateur;… … Encyclopédie Universelle
centre — [ sɑ̃tr ] n. m. • 1275; lat. centrum, gr. kentron I ♦ 1 ♦ Point intérieur (d un cercle, d une sphère) équidistant de tous les points du cercle, de la sphère. Le centre d un disque. Le centre de la Terre. ♢ Centre de symétrie : point tel que tous… … Encyclopédie Universelle
Centre de courbure d'une courbe plane ou gauche en un de ses points — ● Centre de courbure d une courbe plane ou gauche en un de ses points centre du cercle osculateur à la courbe en ce point. (trièdre de Frenet.) … Encyclopédie Universelle
Cercle osculateur — Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M … Wikipédia en Français
Cercle Osculateur — Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la courbe mieux que… … Wikipédia en Français
Cercle osculateur à une courbe en un point M — ● Cercle osculateur à une courbe en un point M cercle centré sur le centre de courbure C de la courbe en M, et de rayon CM … Encyclopédie Universelle
osculatrice — ● osculateur, osculatrice adjectif (latin osculari, baiser) Cercle osculateur à une courbe en un point M, cercle centré sur le centre de courbure C de la courbe en M, et de rayon CM. Plan osculateur à une courbe gauche en un point M, plan défini… … Encyclopédie Universelle
Cercle De Courbure — Cercle osculateur Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la … Wikipédia en Français
Cercle de courbure — Cercle osculateur Tangente et cercle de courbure en un point P de la courbe C En géométrie différentielle, le cercle osculateur ou cercle de courbure est un outil permettant la description locale des courbes. Il s agit d un cercle qui approche la … Wikipédia en Français
Repère de Frenet — En cinématique ou en géométrie différentielle, le repère de Frenet ou repère de Serret Frenet est un outil d étude du comportement local des courbes. Il s agit d un repère local associé à un point P, décrivant une courbe (C). Son mode de… … Wikipédia en Français
Base de Frenet — Repère de Frenet En cinématique ou en géométrie différentielle, le repère de Frenet ou repère de Serret Frenet est un outil d étude du comportement local des courbes. Il s agit d un repère local associé à un point P, décrivant une courbe (C). Son … Wikipédia en Français